DCWS-6028(R2) Smart Wired/Wireless Integrated Access Controller

The DCWS-6028(R2) is a high-performance smart box-type access controller (AC) independently developed by Digital China Networks Co., Ltd. (hereinafter referred to as DCN) for medium wireless networks.

General Details
The DCWS-6028(R2) is a high-performance smart box-type access controller (AC) independently developed by Digital China Networks Co., Ltd. (hereinafter referred to as DCN) for medium wireless networks. Integrating both wired and wireless access means, it offers 10 GE uplink ports and may combine with DCN smart access points (APs) to form a centrally managed wireless local area network (WLAN) solution.

Featuring flexible port configuration, the DCWS-6028(R2) provides sixteen GE combo ports, eight fixed SFP ports, and four 10G SFP+  ports. With 1+1 modular redundant power supplies, the DCWS-6028(R2) is preferred for wireless networks of educational departments, governments, and small or medium enterprises where high performance, comprehensive functions, high security, and high reliability are required.

The DCWS-6028(R2) employs hardware ASICs, which support line-rate forwarding of IPv4/IPv6 Layer 2 (L2) and Layer 3 (L3) data packets. Powered by DCN cutting-edge IPv6 technology, the DCWS-6028(R2) is designed with full IPv6 compatibility. The device supports a broad range of static routing protocols including RIP, OSPF, BGP and PIM, as well as dynamic routing protocols such as IPv6 RIPng, OSPFv3 and PIM6.

The DCWS-6028(R2) can manage up to 1024 smart wireless APs. The device provides strong WLAN access control through systems such as precise user control and management, complete RF management and security mechanism, powerful QoS, seamless roaming, and authentication based on existing networks. Underpinned by a smart cluster management technology, the solution automatically adjusts AP power and channels by monitoring and controlling the RF environment of each AP in real time, and balances loads based on the number of users or traffic to minimize interference to wireless signals and stabilize wireless network loads.

The DCWS-6028(R2) employs an intelligent temperature control and heat dissipation system, which maximally ensures that the entire system stably runs even in a heavy load condition.

In sum, chip-level forwarding capability coupled with a rich service array and considerable cost efficiency positions the DCWS-6028(R2) as a wired/wireless integrated smart AC preferred for applications such as WLAN access to medium campus networks, wireless network coverage for colleges, hospitals, and hotels.

High-Performance and High-Reliability Wireless Network

  • High-density access ports and smart wired/wireless control and forwarding architecture

The DCWS-6028(R2) employs an ASIC-based wireless forwarding technology to provide the high port density and high wireless throughput as compared with similar ACs in the industry. It supports both wireless and wired switching. All wireless traffic and wired traffic are uniformly forwarded in the same chip. Boasting of a wired/wireless integrated control and forwarding architecture, the DCWS-6028(R2) combines the functions of both a wireless AC and a routing switch. Its direct connection mode greatly lowers users’ investment, improves network performance, and facilitates network management.


  • Powerful centralized forwarding capability

The DCWS-6028(R2) can be deployed on a Layer 2 or Layer 3 network without changing existing network architecture at all. It forms an integrated switching fabric with wireless APs to well control and process data exchange on all the APs. A centralized or local forwarding mode may be flexibly configured on the DCWS-6028(R2) according to the service set ID (SSID) and virtual local area network (VLAN) planning of the network. With the ASIC-based wireless forwarding technology, the DCWS-6028(R2) ensures that each of its ports can forward wireless packets at the line rate. The powerful centralized forwarding capability, as a particular feature of DCN wireless ACs, caters to wireless forwarding of large-capacity terminals and meets higher traffic transmission requirements of future wireless networks, such as high-definition Video on Demand (VoD) and Voice over WLAN (VoWLAN) transmission.


  • High-reliability backup mechanism

The DCWS-6028(R2) supports the following high-reliability backup mechanisms to ensure that a wireless network runs reliably:

  • 1+1 fast backup
  • N+1 backup
  • N+N backup
  • Portal 1+1 backup
  • DHCP server hot backup


  • 1+1 modular redundant input power

The DCWS-6028(R2) supports both AC and DC input power, which meet different power supply environment requirements and attain power supply redundancy.


  • End-to-end QoS

The DCWS-6028(R2) provides ASIC-based QoS and comprehensively supports Diff-Serv, such as flow classification, traffic policing, queue management, and queue scheduling. It also supports IPv6 QoS. Of DCN wireless network products, both DCN ACs and DCN APs implement the same QoS function. They support QoS based on per-terminal control and QoS based on air interface control. The entire wireless network provides an end-to-end QoS mechanism, enabling network operators to provide different QoS guarantee of different levels for users and making the Internet really an integrated network that simultaneously bears voice, data, and video services.


  • Automatic emergency mechanism of APs

In a centralized network architecture where fit APs and a wireless AC are deployed, the APs will be unable to operate normally when the wireless AC is down and then the entire wireless network will crash. DCN wireless APs support an automatic emergency mechanism. This mechanism enables an AP to intelligently detect links. When detecting that the wireless AC is down, the AP quickly switches its operating mode so that it may continue to forward data while enabling new users to access the network. This mechanism attains high availability in the entire wireless network and really helps wireless users to be always online.


  • Dual-OS backup mechanism

The DCWS-6028(R2) supports a dual-OS backup mechanism. When the DCWS-6028(R2) fails to start from the active OS, it can immediately start from a standby OS, thereby improving the long-term running reliability of equipment in an adverse environment.


Wireless Network of Intelligent Control and Automatic Perception

  • Intelligent RF management

The DCWS-6028(R2) provides an automatic power and channel adjustment function. It employs particular RF detection and management algorithms to attain a better RF coverage effect. When the signals of an AP are interfered by strong external signals, the AP may automatically switch to an appropriate operating channel under the control of the AC to avoid such interference, thereby guaranteeing wireless network communications. The system also supports wireless network blackhole compensation. When an AP on the network accidentally stops operating, the RF management function of the AC compensates the resulting blind area of signals so that the wireless network can still operate normally.


  • Intelligent control of terminals based on airtime fairness

When some outdated 802.11b and 802.11g terminals are used on a wireless network or some terminals are far way from APs, negotiation rates will be low, causing a large number of users to experience a long WLAN access delay, low rates, or poor overall AP performance. The AP performance problem in a low-rate terminal access environment, however, cannot be resolved by simply employing rate control and traffic shaping. DCN smart APs have essentially resolved this problem by using intelligent control of terminals based on airtime fairness, ensuring that a user can always enjoy the same joyful WLAN experience in the same location, no matter what type of the terminal the user is holding.

The intelligent control of terminals based on airtime fairness greatly improves the performance of both the client and the entire network. It enables all clients with high data transmission rates to attain strikingly higher performance while low-rate clients are almost not affected at all. The performance will be even more obviously higher on an open wireless network. Once high-rate clients finish data transmission, fewer clients will be transmitting data on the wireless network. In this case, there will be less contention and retry on the network, thereby greatly improving overall AP performance.


  • Intelligent load balancing mechanism

In general, a wireless client will select an AP according to the signal strength of APs. When this uncontrolled access mode is applied, however, a large number of clients could be connected to the same AP simply because the AP provides strong signals. As more clients are connected to an AP, the bandwidth available to each client will be smaller, thereby greatly affecting user experience of the clients. DCN wireless products support diversified intelligent load balancing means:

  • AP load balancing based on traffic
  • AP load balancing based on the number of users
  • AP load balancing based on frequency bands
  • Access control based on signal strength of terminals
  • Mandatory roaming control of terminals to direct terminals to APs with stronger signals


  • Intelligent identification of terminals

DCN wireless ACs may combine with DCN smart APs and a unified authentication platform to intelligently identify the size, system type, and type of each terminal; and comprehensively support mainstream smart terminal operating systems, such as Apple iOS, Android, and Windows. They intelligently identify the size of a terminal and adaptively present a portal authentication page of the corresponding size and page pattern, freeing users from multiple times of dragging to adjust the screen and enabling users to enjoy more intelligent wireless experience. They can also intelligently identify the system type of each terminal and present the system type of each terminal such as Windows, MAC OS, or Android on the unified authentication platform, exhibiting every detail of intelligence to users. In addition, they can intelligently identify the type of each terminal such as the mobile phone, tablet, or PC, and implement dynamic policy control of terminals according to different types of the terminals, making possible more intelligent user control at a finer granularity.


  • Comprehensive support for IPv4/v6 dual-stack networks

Powered by DCN cutting-edge IPv6 technology, the DCWS-6028(R2) may be deployed on an IPv6 network, with IPv6 tunnels established through auto negotiation between a wireless AC and an AP. When the wireless AC and the AP completely operate in IPv6 mode, the wireless AC can still correctly identify IPv4 terminals and process IPv4 packets from wireless clients. Featuring flexible adaptability to IPv4/6, the DCWS-6028(R2) caters to complex applications involved in migration from an IPv4 network to an IPv6 network. It not only provides IPv4 service to customers on an IPv6 network, but also enables users on an IPv4 network to log in to the network through the IPv6 protocol at ease.


  • Network-wide seamless roaming

The DCWS-6028(R2) supports an advanced wireless AC cluster technology. This technology enables multiple DCWS-6028(R2) devices to synchronize online connection information and roaming records of all users with one another in real time. This technology implements not only L2/L3 seamless roaming inside a wireless AC but also fast roaming across wireless ACs. As client IP address information does not change and re-authentication is not required in the roaming process, the continuity of real-time mobile services is well guaranteed.


Secure and Controllable Wireless Network

  • User isolation policy

The DCWS-6028(R2) supports the isolation of wireless users from one another. If this user isolation function is enabled, two wireless clients cannot directly communicate with each other but can only access an upstream wired network. This further guarantees the security of wireless network applications.

  • Wireless intrusion detection and intrusion defense

The DCWS-6028(R2) supports wireless intrusion detection and intrusion defense features, such as detection of unauthorized wireless devices, intrusion detection, blacklist, and white list, as well as anti-DoS for various wireless management packets, thereby greatly improving security management of an entire wireless network.


  • Wireless user management at a fine granularity

Under the management of the DCWS-6028(R2), each AP supports a maximum of 32 WLANs to implement multi-layer multi-service management of wireless users at a fine granularity. Each WLAN supports access control and uplink/downlink rate limit based on MAC or IP addresses. These WLANs may be bound to VLANs. In addition, different authentication and accounting policies can be implemented. This feature is practically significant in a multi-WLAN environment.


  • Operational-level permission management mechanism

An SSID-based user permission management mechanism enables a network to be divided into multiple virtual wireless networks based on multiple SSIDs according to actual application requirements. This mechanism sets specific management and viewing permissions for specific users, so that users are completely isolated from one another in terms of operation and management.


  • Secure user admission

The DCWS-6028(R2) provides multiple secure access, authentication, and accounting mechanisms for various application environments. These mechanisms include:

  • 1x authentication
  • Captive portal authentication, including built-in portal, external portal, and custom portal authentication modes
  • MAC address authentication
  • LDAP authentication
  • WAPI encryption and authentication
  • Wired/wireless integrated authentication and accounting


  • Wireless SAVI

DCN wireless network products support a source address validation (SAVI) technology to deal with spoofed packet attacks that keep emerging on today’s campus networks. As users’ IP addresses are obtained through an address allocation protocol, users access the Internet using correct addresses in subsequent applications and cannot spoof others’ IP addresses, thereby guaranteeing the reliability of source addresses. In addition, the SAVI technology is combined with a portal technology to further guarantee the authenticity and security of packets of all users accessing the Internet.


  • PEAP user authentication

With the popularization and application of smart terminals, wireless terminal users require authentication mechanisms of higher usability and convenience. Using a mechanism that combines portal authentication and MAC address authentication, DCN wireless network products support Protected Extensible Authentication Protocol (PEAP) authentication to attain better user experience. Initially a user needs to manually perform portal authentication and later the user gets authenticated through PEAP in automatic mode. DCN wireless network products feature high terminal adaptation and provide good authentication compatibility. They adapt to the majority of WLAN terminals and do not need to adapt to clients. DCN wireless network products are compatible with existing portal authentication modes.


  • Secure access mechanism of APs

An AP is usually deployed in a public area and therefore requires a strict security mechanism to guarantee the legality of access devices. The following secure access mechanisms may be applied between a DCN wireless AC and a smart AP:

  • AP MAC address authentication
  • AP password authentication
  • Bidirectional digital certificate authentication


  • Real-time spectrum protection

DCN smart APs support a built-in RF collection module that integrates RF monitoring and real-time spectrum protection. By implementing communications and data collection through the respective AP, the RF collection module performs wireless environment quality monitoring, wireless network capability tendency evaluation, and unexpected-interference alarms. It resorts to a graphical means to actively detect and identify RF interference sources (Wi-Fi or non-Wi-Fi) and provides a real-time spectrum analysis diagram. In addition, it can automatically identify interference sources and determine the locations of problematic wireless devices, ensuring that a wireless network attains optimal performance.


Easy-to-Manage Wireless Network

  • AP plug-and-play

The DCWS-6028(R2) smart AC can be seamlessly integrated with existing switches, firewalls, authentication servers, and other network devices. DCN smart APs are able to automatically discover the DCWS-6028(R2). A wireless network function can be enabled on an AP without performing any configuration on the AP at all.

When used with the DCWS-6028(R2), DCN smart APs support plug-and-play and zero configuration. The wireless AC undertakes all the management, control, and configuration of the APs. Network administrators do not need to separately manage or maintain a huge number of wireless APs. All actions, such as configuration, firmware upgrade, and security policy updating, are performed uniformly under the control of the wireless AC.


  • Remote probe analysis

The DCWS-6028(R2) supports remote probe analysis of APs. It listens to and captures Wi-Fi packets in the coverage and mirrors them to a local analysis device in real time to help network administrators better perform troubleshooting or optimization analysis. The remote probe analysis function can perform non-convergence mirroring of a working channel and sampling of all channels in polling mode as well to flexibly meet various wireless network monitoring, operation, and maintenance requirements.


  • Multiple management modes and uniform management platform

The DCWS-6028(R2) supports various management modes such as command lines and web. It can be used to plan, deploy, monitor, and manage APs on an entire network centrally and effectively at low costs. It may also be used with a DCN platform for integrated management of wireless and wired devices, so that administrators can monitor and manage the entire network in a data center as follows:

–    Generating topologies

  • Checking the working states of APs and the states of online users
  • Planning RF resources on the entire network
  • Locating users
  • Generating security alarms
  • Checking link loads, device usage and roaming records
  • Outputting reports


Hardware Specifications

Dimensions440mmx44mmx350mm; 19 inches, 1 U high, supporting rack installation
Switching capacity208 Gbps
Service port16 GE combo ports (GE/SFP)
8 GE SFP ports
4 10G SFP+ ports
Management portOne console port (RJ-45)
Power supply2 power slots, 1+1 Modular Redundant
Power consumption90 W
Working/Storage temperature0℃ to +50℃

–40℃ to +75℃

Working/Storage RH10% to 90% (non-condensing)


Software Specifications

Base number of manageable APs32
Maximum number of manageable APs1024
Number of manageable ACs in a cluster64
AP upgrade step32
Maximum number of concurrent wireless users60k
MAC address list32K
ARP table16K
Switching time during roaming< 30 ms
L2 protocols and standardsIEEE802.3 (10Base-T), IEEE802.3u (100Base-TX), IEEE802.3z (1000BASE-X), IEEE802.3ab (1000Base-T), IEEE802.3ae (10GBase-T)

IEEE802.3ak (10GBASE-CX4), IEEE802.1Q (VLAN)

IEEEE802.1d (STP), IEEEE802.1W (RSTP), IEEEE802.1S (MSTP)

IEEE802.1p (COS)

IEEE802.1x (Port Control), IEEE802.3x (Flow Control)

IEEE802.3ad (LACP), Port Mirror

IGMP Snooping, MLD Snooping


Broadcast storm control

L3 protocols and standardsStatic Routing

RIPv1/v2, OSPF, BGP, VRRP, IGMP v1/v2/v3

ARP, ARP Proxy


Wireless protocols and standards802.11, 802.11a, 802.11b, 802.11g, 802.11n, 802.11d, 802.11h, 802.11i, 802.11e, 802.11k
CAPWAP protocolSupports L2/L3 network topology between an AP and an AC.
Enables an AP to automatically discover an accessible AC.
Enables an AP to automatically upgrade its software version from an AC.
Enables an AP to automatically download configurations from an AC.
IPv6 protocols and standardsIPv4/v6 dual-stack, manual tunnel, ISATAP, 6to4 tunnel, IPv4 over IPv6 tunnel, DHCPv6, DNSv6, ICMPv6, ACLv6, TCP/UDP for IPv6, SOCKET for IPv6, SNMP v6, Ping /Traceroute v6, RADIUS, Telnet/SSH v6, FTP/TFTP v6, NTP v6, IPv6 MIB support for SNMP, VRRP for IPv6, IPv6 QoS, static routing, OSPFv3, IPv6 SAVI
High reliability1+1 fast backup
N+1 backup
N+N backup
Portal 1+1 backup
DHCP server hot backup
RF managementSetting country codes
Manually/automatically setting the transmit power
Manually/automatically setting the working channel
Automatically adjusting the transmission rate
Blind area detection and repair
RF environment scanning, which enables a working AP to scan the surrounding RF environment
RF interference detection and avoidance
11n-preferred RF policy
SSID hiding
20 MHz and 40 MHz channel bandwidth configuration
Airtime protection in hybrid access of 11bg and 11n terminals
Terminal-based airtime fairness scheduling
Spectral analysis
Terminal locating (A terminal locating algorithm can be embedded in the AC)
Spectral navigation (5 GHz preferred)
11n only
SSID-based or Radio-based limit on the number of users
User online detection
Automatic aging of traffic-free users
Prohibiting the access of clients with weak signals
Remote probe analysis
Forced roaming of clients with weak signals
Security64/128 WEP, dynamic WEP, TKIP, CCMP, and SMS encryption
802.11i security authentication and two modes (Enterprise and Personal) of 802.1x and PSK
WAPI encryption and authentication
LDAP authentication
MAC address authentication
Portal authentication, including built-in portal, external portal, and custom portal authentication modes
PEAP user authentication
Forwarding security control, such as frame filtering, white list, static blacklist, and dynamic blacklist
User isolation
Periodic Radio/SSID enabling and disabling
Access control of free resources
Secure admission control of wireless terminals
Access control of various data packets such as MAC, IPv4, and IPv6 packets
Secure access control of APs, such as MAC authentication, password authentication, or digital certificate authentication between an AP and an AC
Radius Client
Backup authentication server
Wireless SAVI
User access control based on AP locations
Wireless intrusion detection system (WIDS) and wireless intrusion prevention system (WIPS)
Protection against flooding attacks
Protection against spoofing attacks
ForwardingIPv6 access and forwarding; constructing IPv6 WLAN access service on an IPv4 network; providing IPv4 WLAN access service on an IPv6 network; and constructing private IPv6 WLAN network service on an IPv6 network
Fast L2/L3 roaming between APs served by the same AC
Fast L2/L3 roaming between APs served by different ACs
IPv4 and IPv6 multicast forwarding
QoS802.11e (WMM); and 4-level priority queues, ensuring that applications sensitive to the real-time effect, such as voice and video services, are transmitted first
Ethernet port 802.1P identification and marking

Mapping from wireless priorities to wired priorities

Mapping of different SSIDs/VLANs to different QoS policies

Mapping of data streams that match with different packet fields to different QoS policies

Access control of MAC, IPv4, and IPv6 data packets
Load balancing based on the number of users

Load balancing based on user traffic

Load balancing based on frequency bands

Bandwidth limit based on APs

Bandwidth limit based on SSIDs

Bandwidth limit based on terminals

Bandwidth limit based on specific data streams

Power saving mode
Multicast-to-unicast mechanism
Automatic emergency mechanism of APs
Intelligent identification of terminals
ManagementWeb management
Configuration through a console port
SNMP v1/v2c/v3
Both local and remote maintenance
Local logs, Syslog, and log file export
Fault detection
Login through Telnet
Login through SSH
Dual-image (dual-OS) backup
Hardware watchdog
AC cluster management; automatic information synchronization between ACs in a cluster, and automatic or manual push of configuration information
SSID-based user permission management mechanism


Purchase Information
Product ModelDescriptionRemarks
DCWS-6028(R2)DCN smart wired/wireless integrated AC (including a license for managing 32 APs by default)Mandatory
DCWS-L16Upgrade license of the DCN wired/wireless integrated smart AC (for upgrading 16 APs, minimum number of upgrade step is 16 APs)Optional
DCWS-L32Upgrade license of the DCN wired/wireless integrated smart AC (for upgrading 32 APs, minimum number of upgrade step is 32 APs)Optional
DCWS-L128Upgrade license of the DCN wired/wireless integrated smart AC (for upgrading 128 APs, minimum number of upgrade step is 128 APs)Optional
Typical Applications